AP g+

ITERKEEE HiTER
Bg#d —FRASE ERHENT

..H:J EEf é‘ﬁﬁ '}7“;“

£

CEO, AppCloudom Software

S BN R ELE A 731 (UCLA) Hiik TAZFE A

- AI, Big Data Analytics, Android App B %
« C/C++, Java, R, SA&D, Networking, Security

© ITEVUKEKEIH BRI AR AR BUTR
bigDataSpark K#iZamiE HHEAN
AL A
— R AR AR BB S Wl O
— SEIE RN SE Bl
© BSLRAER RO BE R AR EE R
o BN B R A2 AR I U i 5 R W S L FRAT IS B
+ Cisco CCAI (CCNA & CCNA Security)
* 2005~2012 EATBhEEHIR
— AR E: ElR R R

17 = I /KB e 48 A A BR 2]
*

AppCloudom Software Dev. Corp.

Android App B2 =&

1.1 Android BIZIREET

1.2 Android App BZE

1.3 EARHER U

1.4 Intent - B(E 5 —1{@ Activity

1.5 Activity 4 #n3iE HA

1.1 Android FZEIRIEE L

Setting up the Android development environment as follows:

1. Download Android Studio 2.3 for Android 7.0.

(http://developer.android.com/sdk/index.html)

2. Download the latest SDK tools and platforms using the SDK
Manager.

(http://developer.android.com/tools/help/sdk-manager.html)

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing/index.html?pkg=adt
http://developer.android.com/tools/help/sdk-manager.html
http://developer.android.com/tools/help/sdk-manager.html

App FJPYEFEZA T

Activities (JEH)) A
744 intent
Services (HR75) pS HE LK
(ESTAHINSS
Broadcast Receivers (JERE I #Y) J —

Content Providers (N &2 4LE)

)

gl

%1% ContentResolver (A & T #s)Y |

=

R B AE

Intent (E[E)

« Intent GEJE

) A H

« An Intent is an object that provides runtime binding between

separate components (such as two activities).

« The Intent represents an app’s "intent to do something.” You
can use intents for a wide variety of tasks, but most often

they’re used to start another activity.

i

— ARHy - BRG] DU AEA FE ARSI
Flan - WAE (e E) App FA RO K BUEEE.
— FAEHY - AR AR
i dm > —18 App ¥ > £ Activities [iR & IR FS,

Ul 8%5T oot

« UI jof4 (User Interface elements) 43 2 Wi 48

— View JofF (70 : button JoH)

— ViewGroup Joff (#40 : LinearLayout, ...)

[Note] : 88 & 5 (resources)f

E37 7 XML i 5eF

m|

o)

Course materials referred to
https://developer.android.com/training/index.html

& C [ﬁ %% https://developer.android.com/training/index.html @ ﬁ'] (o |

i . - S
l'l Developers Q, Search)+ DEVELOPER CONSOLE

£ =||| ek =B F2 _
¢ llARRRTE Develop » Training

st * | Getting Started

Building Your First App v

Welcome to Training for Android developers. Here you'll find trainin
Supporting Different Devices o ning aaevarop youtta ining Check out this trailer for a course about the fundamentals of Android
classes that describe how to accomplish a specific task with code .
development on Udacity.

Building a Dynamic Ul with o samples you can re-use in your app. Classes are organized into several
ments roups you can see at the top-level of the left navigation. : :
e groupsy g g Developing Android Apps
[PEc3 3ol v The first training guides below teach you the essentials for Android app
development. If you're a new Android app developer, you should complete
RAMRAAED . each of these classes in order.
L - Various online video courses are also available if you'd prefer an
Permissions
interactive video experience.
Building Apps with Content v

Sharing START THE VIDEO COURSE

Building Apps with Multimedia v

Building Apps with Graphics & v
Animation

Building Apps with Connectivity
& the Cloud

Building Your First App

Building Apps with Location & v

Maps

After you've installed Android Studio, start with this class to learn the Create an Android Project
Bf-ldmg Apps with User Info & - basics about Android app development.
Sign-In Run Your App
Building Apps for Wearables v Build a Simple User Interface
Building Apps for TV v Start Another Activity

1100000 e

https://developer.android.com/training/index.html

1.2 Android App % 1/12

[GOAL] : Create a Project with Android Studio

1. In Android Studio, create a new project:

* |f you don't have a project opened, in the Welcome screen, click New Project.

 |f you have a project opened, from the File menu, select New Project.

o Android Studio Setup

/0 Welcome to Android Studio

Recent Projects Quick Start

(E@ Start a new Android Studio project)
p—

P—l Open an existing Android Studio project
p—

No Project O Yet i
O Froject Lpen Te PR/ Import an Android code sample

~ Check out project from Version Control
|
PR/ Import Non-Android Studio project

’/(: Configure AndrOid StUdiO 1-0

l;? Docs and How-Tos fOf
Android 5.0

Android Studio 1.0 Build 135.1629389. Check for updates now.

http://developer.android.com/training/basics/firstapp/creating-project.html#Studio

1.2 Android App X

2. Under Configure your new project, fill
in the fields as shown in figure 1 and
click Next.

It will probably be easier to follow
these lessons if you use the same
values as shown.

o Application Name is the app name
that appears to users. For this
project, use "My First App.”

o Company domain provides a
qualifier that will be appended to
the package name; Android Studio
will remember this qualifier for each
new project you create.

o Package name is the fully qualified
name for the project (following the
same rules as those for naming
packages in the Java programming
language). Your package name
must be unique across all packages
installed on the Android system.
You can Edit this value

2/12

) e (TR A RO N PO e e

New Project

Android Studio

Configure your new project

Application name: My First App

Company Domain: mycompany.com

Package name: com.mycompany.myfirstapp
Project location: | ~/AndroidProjects|/MyFirstApp
| Cancel Previous E Finish

Figure 1. Configuring a new project in Android Studio.

independently from the application name or the company domain.

o Project location is the directory on your system that holds the project files.

10

1.2 Android App X

3/12

3. Under Select the form factors your app will run on, check the box
for Phone and Tablet.

4. For Minimum SDK, select API 8: Android 2.2 (Froyo).

5. Leave all of the other options (TV, Wear, and Glass) unchecked and click Next.

New Project

A Android Studio

Create New Project

Different platforms require separate SDKs

Minimum SDK

[TV
Minimum SDK
[] Wear

Minimum SDK

[] Glass
Minimum SDK

 Phone and Tablet

Select the form factors your app will run on

API 8: Android 2.2 (Froyo)

A
v

Lower API levels target more devices, but have fewer features available. By targeting API 8 and
later, your app will run on approximately 100.0% of the devices that are active on the Google

Play Store. Help me choose.

APl 21: Android 5.0 (Lollipop)

APl 21: Android 5.0 (Lollipop)

Glass Development Kit Preview (Google Inc.) (API 19)

4>

4>

4>

[Cancel

J [Previous J [

Next

J

Finish

11

1.2 Android

App E=E

4/12

and click Finish.

6. Under Add an activity to your project, select Blank Activity and click Next.

/. Under Describe the new activity for your project, leave the fields as they are

Create New Project

Choose options for your new file

Blank Activity

Creates a new blank activity with an action bar.

Activity Name: MainActivity
Layout Name: activity_main
Title: MainActivity

Menu Resource Name: menu_main

The name of the activity class to create

Cancel

Previous

Finish

12

1.2 Android App % 5/12

Regarding Activities ...

* An activity is one of the distinguishing features of the Android

framework.

e Activities provide the user with access to your app, and there

may be many activities.

* An application will usually have a main activity for when the user
launches the application, another activity for when she selects
some content to view, for example, and other activities for when

she performs other tasks within the app.

13

[J

+ 1:Project

| 7:Structure

A

2: Favorites

Build Variants

1.2 Android App EX

®
= %] %) O F
MyFirstApp app src main res)
Android v QD =
v app
v manifests
<& AndroidManifest.xml >
v java
v com.mycompany.myfirstapp
< © b MainActivity >
> com.mycompany.myfirstapp (:

v =res

v drawable
ic_launcher.png (4)
i ic_launcher.png (hdp

il ic_launcher.png (mdpi)

v

activity_main.xml

ii| ic_launcher.png (xhdp

ii| ic_launcher.png (xxhdp

v layout
> menu
v values
> dimens.xml (2

< strings.xml
< styles.xml

v (o Gradle Scripts

® build.gradle (Project: My

< build.gradle (Module

il gradle-wrapper.properties (Gradle Ver:

i1 gradle.properties (Project Properties
* settings.gradle (Project Setting
iil local.properties (SDK

& Terminal

0: Messages

6: Android

i

01

layout

- A

= TODO

e activity_main.xml - [app] - My First App - [~/AndroidStudioProjects/MyFirstApp]

LinearLayout (Horizonte

LinearLayout (Vertical)

TableLayout
TableRow
GridLayout
RelativeLayout
Widgets

Ab| Plain TextView
AblLarge Text

Abl Medium Text
Ab| Small Text

Button

Small Button
RadioButton
CheckBox
Switch
ToggleButton

& ImageButton
= ImageView
= ProgressBar (Large)
= ProgressBar (Normal)
= ProgressBar (Small)
= ProgressBar (Horizonta

» SeekBar

% RatingBar

Spinner

D WebView

Text Fields
Plain Text
Person Name
Password

Design Text

app v | D ¢ [k ¢ & ?
< activity_main.xml »
C MainActivity.javaG> activity_main.xml x SAndroidManifest.xml x & ApplicationTest.java % & MyFirstApp % ® app X
Palette B~ e ~ [Tl Nexus 4~ ~ (D AppTheme .~ MainActivity~ ()~ 15121~ Component Tree
Layouts R » ¥ |J Device Screen
Y v = M/ o, B 5
Framelayout v RelativeLayout

Abl TextView - @string/he

Properties

layout:height

style

accessibilityLiveRegion

alpha

background

backgroundTint

backgroundTintMode

clickable

contentDescription

elevation

focusable

focusableInTouchMode
> gravity

id

Event Log

[£] Gradle Console

6/12

match_parent

B~ 1
S Y

44 Memory Monitor

s109[0.d uaAep

0 3|peJn (oy

Japuewwo) N

] Gradle build finished in 14 sec (10 minutes ago)

n/a

n/a

14

1.2 Android App % 7/12

Your Android project is now a basic "Hello World" app that contains some default
files. Take a moment to review the most important of these:

app/src/main/res/layout/activity_my.xml

This is the XML layout file for the activity you added when you created the project
with Android Studio. Following the New Project workflow, Android Studio presents
this file with both a text view and a preview of the screen Ul. The file includes some
default settings and a TextView element that displays the message, "Hello world!”

app/src/main/java/com.mycompany.myfirstapp/MyActivity.java

A tab for this file appears in Android Studio when the New Project workflow
finishes. When you select the file you see the class definition for the activity you
created. When you build and run the app, the Activity class starts the activity and
loads the layout file that says "Hello World!"

app/src/res/AndroidManifest.xml

The manifest file describes the fundamental characteristics of the app and defines
each of its components. You'll revisit this file as you follow these lessons and add
more components to your app.

15

1.2 Android App % 8/12

app/build.gradle

Android Studio uses Gradle to compile and build your app. There is a build.gradle
file for each module of your project, as well as a build.gradle file for the entire
project. Usually, you're only interested in the build.gradle file for the module, in this
case the app or application module. This is where your app's build dependencies are
set, including the defaultConfig settings:

compiledSdkVersion . ; —
apply plugin: 'com.android.application’
applicationid android {
compileSdkVersion 21
mMinSdkVersion buildToolsVersion "21.1.1"
. defaultConfig {
targetSd kVersion applicationld "com.mycompany.myfirstapp"

minSdkVersion 8
targetSdkVersion 21
versionCode 1
versionName "1.0"

}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'

}
}
}

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
compile 'com.android.support:appcompat-v7:21.0.2'

}

16

1.2 Android App % 9/12

The /res subdirectories that contain the resources for your application:

drawable-hdpi/

Directory for drawable objects (such as bitmaps) that are designed for
high-density (hdpi) screens. Other drawable directories contain assets
designed for other screen densities. Here you'll find the ic_launcher.png
that appears when you run the default app.

layout/
Directory for files that define your app's user intertface like activity_my.xml,
discussed above, which describes a basic layout for the MyActivity class.

values/

Directory for other XML files that contain a collection of resources, such as
string and color definitions. The strings.xml file defines the "Hello world!"
string that displays when you run the default app.

17

1.2 Android App % 10/12
Run on a Real Device

Set up your device

1. Plug in your device to your development machine with a USB cable. If you're developing on Windows, you

might need to install the appropriate USB driver for your device. For help installing drivers, see the OEM USB
Drivers document.

2. Enable USB debugging on your device.

o On most devices running Android 3.2 or older, you can find the option under Settings > Applications >
Development.

o On Android 4.0 and newer, it's in Settings > Developer options.

Note: On Android 4.2 and newer, Developer options is hidden by default. To make it available, go to

Settings > About phone and tap Build number seven times. Return to the previous screen to find
Developer options.

Run the app from Android Studio

1. Select one of your project’s files and click Run » from the toolbar.

2. Inthe Choose Device window that appears, select the Choose a running device radio button, select your
device, and click OK..

Android Studio installs the app on your connected device and starts it.

18

Run on a Real Device (cont’d)

(e) Choose a running device

Device Serial Number State Compatible
7 HTC One 801c Android 4.4.3 (e 1) oz lonine ves [N S e NS il (B304
al P -

My First App

Hello world!

) Launch emulator

Android virtual device: Nexus_4 A
. | Use same device for future launches

- Cancel | [OK J

1.2 Android App X 11/12

Run on the Emulator

Whether you're using Android Studio or the command line, to run your app on the emulator you need to first create an Android
Virtual Device (AVD). An AVD is a device configuration for the Android emulator that allows you to model a specific device.

1. Launch the Android Virtual Device Manager:
o In Android Studio, select Tools > Android > AVD Manager, or click the AVD Manager icon E.. in the toolbar.
o Or, from the command line, change directories to <sdk>/tools/ and execute:

android avd

Note: The AVD Manager that appears when launched from the command line is different from the
version in Android Studio, so the following instructions may not apply.

@ O AVD Manager

Your Virtual Devices

Android Studio

Type Name \ Resolution APl | Target CPU/ABI Size on Disk ‘ Actions
§ Android Wear Round API 20 320 x 320: hdpi 20 Android 4.4W.2 *86 566 MB b 2~
(] nexussarPi 21 1440 x 2560: 560dpi 21 Android 5.0 x86.. 650 MB b 2~
[0 profileNexus aPI 21 1080 x 1920: xchdpi 21 Android 5.0 86 650 MB b 2~
| + Create Virtual Device... J l D |

m | Cancel |

1.2 Android App % 12/12

Run on the Emulator (cont’d)

2. On the AVD Manager main screen, click Create Virtual Device.

3. In the Select Hardware window, select a device configuration, such as Nexus 6,
then click Next.

4. Select the desired system version for the AVD and click Next.

5. Verity the configuration settings, then click Finish.

Run the app from Android Studio

1. In Android Studio, select your project and click Run from the toolbar.

2. In the Choose Device window, click the Launch emulator radio button.

3. From the Android virtual device pull-down menu, select the emulator you
created, and click OK.

It can take a few minutes for the emulator to load itself.

21

Run on the Emulator (cont’d)

5554:Nexus_7

() Choose a running device

o0

My First App : :
Aol O

o world!

He

(e) Launch emulator
Nexus_4 S

Android virtual device:

| Use same device for future launches

. Cancel | [

Your Virtual Devices
Android Studio

Type Name Resolution API Target CPU/ABI |Size on Disk
m Nexus 4 768 x 1280: xhdpi 18 Android 4.3.1 arm 311 MB | A4
m Nexus 5 APl 21 x86 1080 x 1920: xxhdpi 21 Google APIs x86 750 MB | A 4
@ [1] Nexus7 800 x 1280: tvdpi 19 Android 4.4.2 __m 667 MB b 2~
[= Create Virtual Device...J 6
| Cancel OK

1.3 ELEBER] U 1/12

[GOAL] : to create a layout in XML that includes a text field and a button.

The graphical user interface for an Android app is built using a hierarchy of View and
ViewGroup objects. View objects are usually Ul widgets such as buttons or text fields.
ViewGroup objects are invisible view containers that define how the child views are laid
out, such as in a grid or a vertical list.

- Android provides an XML vocabulary that corresponds to the subclasses of View

and ViewGroup so you can define your Ul in XML using a hierarchy of Ul elements.

[ayouts are subclasses of the ViewGroup.

In this exercise, you'll work with a LinearlLayout.

- View

View

23

1.3 ESEfHER Ul 2/12

STEP 1 : Create a Linear Layout

1. In Android Studio, from the res/layout directory, open the activity_main.xml file.

2. The BlankActivity template you chose when you created this project includes the

activity_main.xml file with a RelativeLayout root view and a TextView child view.
3. In the Preview pane, click the Hide icon to close the Preview pane.

4. In Android Studio, when you open a layout file, you're first shown the Preview pane.
Clicking elements in this pane opens the WYSIWYG tools in the Design pane.

5. For this lesson, you're going to work directly with the XML.

6. Delete the <TextView> element.

/. Change the <RelativeLayout> element to <LinearLayout>.

8. Add the android:orientation attribute and set it to "horizontal".

9. Remove the android:padding attributes and the tools:context attribute.

24

1.3 EXEFHER U 3/12

The result looks like this:
res/layout/activity_main.xml

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent”
android:orientation="horizontal" >

</LinearLayout>

25

1.3 ELEBER] U 4/12

Regarding LinearLayout ...

1. LinearLayout is a view group (a subclass of ViewGroup) that lays out
child views in either a vertical or horizontal orientation, as specified by the

android:orientation attribute.

2. Each child of a LinearLayout appears on the screen in the order in which it

appears in the XML.

3. Because the LinearLayout is the root view in the layout, it should fill

the entire screen area that's available to the app by setting the width

and height to "match_parent".

4. This value declares that the view should expand its width or height to match

the width or height of the parent view.

20

1.3 ELEBER] U 5/12

STEP 2 : Add a Text Field

As with every View object, you must define certain XML attributes to specify the

EditText object's properties.

1. In the activity_main.xml file, within the <LinearLayout> element, define an

<EditText> element with the id attribute set to @+id/edit_message.
2. Define the layout_width and layout_height attributes as wrap_content.

3. Define a hint attribute as a string object named edit_message.

27

1.3 EAEBER Ul

The <EditText> element should read as follows:

res/layout/activity_main.xml

<EditText android:id="@+id/edit_message’
android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:hint="@string/edit_message" />

28

6/12

Preview

+ ' Nexus 4~ i jAppTheme

* Rendering Problems
Couldn't resolve resource
@string/edit_message

1.3 ELEBER] U 7/12

STEP 3 : Add String Resources

By default, your Android project includes a string resource file at res/values/
strings.xml. Here, you'll add a new string named "edit_message’ and set the value

to "Enter a message.’

1. In Android Studio, from the res/values directory, open strings.xml.
2. Add a line for a string named "edit_message" with the value, "Enter a message".
3. Add a line for a string named "button_send" with the value, “Send".

You'll create the button that uses this string in the next section.

4. Remove the line for the "hello world" string.

29

1.3 EXEFHER U 8/12

Preview o 2,

The result for strings.xml looks like this:

~ |5 Nexus 4~ i~ (D AppTheme —MainActivityv

res/values/strings.xml

<?xml version="1.0" encoding="utf-8"7>

<resources>

<string name="app_name">My First App</string>

<_<string name="edit_message">Enter a message</string>__>

<string name="button_send">Send</string>
<string name="action_settings">Settings</string>
<string name="title_activity_main">MainActivity</string>

</resources>

30

1.3 EXEFHER U 9/12

Regarding string resources ...
1. For text in the user interface, always specify each string as a resource.

2. String resources allow you to manage all Ul text in a single location, which
makes the text easier to find and update.

3. Externalizing the strings also allows you to localize your app to different
languages by providing alternative definitions for each string resource.

31

1.3 EXRHER U 10/12

STEP 4 : Add a Button

1. In Android Studio, from the res/layout directory, edit the activity_main.xml file.

2. Within the <LinearLayout> element, define a <Button> element immediately following
the <EditText> element.

3. Set the button's width and height attributes to "wrap_content’ so the button is only as
big as necessary to fit the button's text label.

4. Define the button's text label with the android:text attribute; set its value to the
button_send string resource you defined in the previous section.

32

1.3 EXEFHER U 11/12

The <LinearLayout> should look like this:

res/layout/activity_main.xml

<LinearLayout xmins:android="http://schemas.android.com/apk/res/android”

xmlins:tools="http://schemas.android.com/tools’

android:layout_width="match_parent’ Note: This button
android:layout_height="match_parent" doesn't need the
android:id attribute,
because it won't be
referenced from the

activity code.
android:layout_height="wrap_content" — —

android:orientation="horizontal" >
<EditText android:id="@+id/edit_message"

android:layout_width="wrap_content"

android:hint="@string/edit_message" />

<Button

android:layout_width="wrap_content"

android:layout_height="wrap_content’

android:text="@string/button_send" />
Enter a message SEND

</LinearLayout>

33

1.3 EXEFHER U 12/12

STEP 5 : Make the Input Box Fill in the Screen Width

To fill the remaining space in your layout with the EditText element, do the following:

1. In the activity_main.xml file, assign the <EditText> element's layout_weight attribute
a value of 1.

2. Also, assign <EditText> element's layout_width attribute a value of 0dp.

res/layout/activity_my.xml Note:

1. To improve the layout efficiency when you

specify the weight, you should change the
width of the EditText to be zero (0dp).
2. Setting the width to zero improves layout

<EditText

android:layout_weight="1"

android:layout_width="0dp" performance because using "wrap_content" as
B the width requires the system to calculate a
L[> width that is ultimately irrelevant because the

weight value requires another width calculation
to fill the remaining space.

34

Here’s how your complete activity_main.xml layout file should now look:

res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"7>

<LinearLayout xmiIns:android="http://schemas.android.com/apk/res/android’

xmlins:tools="http://schemas.android.com/tools’ CPZANAABE N2 g (% 74819

android:layout_width="match_parent’

My First App

android:layout_height="match_parent"
‘Enter a message Send

android:orientation="horizontal">

<EditText android:id="@+id/edit_message"
android:layout_weight="1"
android:layout_width="0dp"
android:layout_height="wrap_content’
android:hint="@string/edit_message" />

<Button
android:layout_width="wrap_content’
android:layout_height="wrap_content’
android:text="@string/button_send" />

</LinearLayout>

35

1.4 Intent - E{&) = —1E Activity 1/14

After completing the previous lesson, you have an app that shows an activity
(a single screen) with a text field and a button.

[GOAL]: Inthislesson, you’ll add some code to MainActivity that
starts a new activity when the user clicks the Send button.

STEP 1 : Respond to the Send Button

1. In Android Studio, from the res/layout directory, edit the activity_main.xml file.

2. To the <Button> element, add the android:onClick attribute.

res/layout/activity_main.xml

<Button
android:layout_width="wrap_content’
android:layout_height="wrap_content’

android:text="@string/button_send"

android:onClick="sendMessage" />

The android:onClick attribute’s value, "sendMessage’, is the name of a method in your activity
that the system calls when the user clicks the button.

36

1.4 Intent - E{&) = —1E Activity 2/14

3. In the java/com.mycompany.myfirstapp directory, open the MainActivity.java file.

4. Within the MainActivity class, add the sendMessage() method stub shown below.

java/com.mycompany.myfirstapp/MainActivity.java
/** Called when the user clicks the Send button */

public void sendMessage(View view) {

// Do something in response to button

In order for the system to match this method to the method name given to android:onClick, the
signature must be exactly as shown. Specifically, the method must:

1. Be public

2. Have a void return value

3. Have a View as the only parameter (this will be the View that was clicked)

Next, you'll fill in this method to read the contents of the text field and deliver that text to another

activity.

37

1.4 Intent - E{&) = —1E Activity 3/14

STEP 2 : Build an Intent

1. In MainActivity.java, inside the sendMessage() method, create an Intent to start

an activity called DisplayMessageActivity with the following code:

java/com.mycompany.myfirstapp/MainActivity.java

public void sendMessage(View view) {

Intent intent = new Intent(this, DisplayMessageActivity.class);

[Note] : The Intent constructor used here takes two parameters:

« A Context as its first parameter (this is used because the Activity
class is a subclass of Context)

* The Class of the app component to which the system should deliver
the Intent (in this case, the activity that should be started)

Android Studio indicates that you must import the Intent class.

38

1.4 Intent - B{E) 5= —{& Activity 4/14

2. At the top of the file, import the Intent class:

java/com.mycompany.myfirstapp/MainActivity.java

Import android.content.Intent;

< Tip > : In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

3. Inside the sendMessage() method, use findViewByld() to get the EditText element.

java/com.mycompany.myfirstapp/MainActivity.java

public void sendMessage(View view) {
Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewByld(R.id.edit_message);

39

1.4 Intent - E{&) = —1E Activity 5/14

4. At the top of the file, import the EditText class.
In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

5. Assign the text to a local message variable, and use the putExtra() method to add its
text value to the intent.

java/com.mycompany.myfirstapp/MainActivity.java

public void sendMessage(View view) {
Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewByld(R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);

}

* An Intent can carry data types as key-value pairs called extras.

« The putExtra() method takes the key name in the first parameter and the value in the
second parameter.

40

1.4 Intent - E{&) = —1E Activity 6/14

6. At the top of the MainActivity class, add the EXTRA_MESSAGE definition as follows:

java/com.mycompany.myfirstapp/MainActivity.java

public class MyActivity extends ActionBarActivity {
public final static String EXTRA_MESSAGE = "com.mycompany.myfirstapp.MESSAGE";

-

e For the next activity to query the extra data, you should define the key for your intent's
extra using a public constant.

e |t's generally a good practice to define keys for intent extras using your app's package
name as a prefix. This ensures the keys are unigque, in case your app interacts with
other apps.

7. In the sendMessage() method, to finish the intent, call the startActivity() method,
passing it the Intent object.

41

1.4 Intent - E{&) = —1E Activity 7/14

With this new code, the complete sendMessage() method that's invoked by the
Send button now looks like this:

java/com.mycompany.myfirstapp/MainActivity.java

/** Called when the user clicks the Send button */

public void sendMessage(View view) {
Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewByld(R.id.edit_message);
String message = editText.getText().toString():;
intent.putExtra(EXTRA_MESSAGE, message);
startActivity(intent);

42

1.4

Intent - E{E) = —1E Activity

8/14

STEP 3 : Create the Second Activity

* All subclasses of Activity must implement the onCreate() method.
This method is where the activity receives the intent with the message,
then renders the message.

* Also, the onCreate() method must define the activity layout with the

setContentView() method.

This is where the activity performs the initial setup of the activity

components.

43

1.4 Intent - B{E15—{@& Activity 9/14

Create a new activity using Android Studio

Android Studio includes a stub for the

© 00
onCreate () method when you create a new
aCtiVitY- Choose options for your new file
1. In Android Studio, in the java directory,
Select the package’ Creates a new blank activity with an action bar.
com.mycompany.myfirstapp, right-click, (W~ |
. m - Activity Name: DisplayMessageActivity
and select New > Activity > Blank Activity. ,
Layout Name: activity_display_message
2. In the Choose options window, fill in the Title: [My Message
aCtiVity deta”SZ || Launcher Activity
o Activity Name: DisplayMessageActivity o oompeny-myErstap MyActivicl Il
Package name: com.mycompany.myfirstapp -
o Layout Name:
5 0 - Blank Activity
activity_display_message
o Title My Message | Cancel Previous Next
° Hierarchical Parent: Figure 1. The new activity wizard in Android Studio.

com.mycompany.myfirstapp.MyActivity
o Package name: com.mycompany.myfirstapp
Click Finish.

44

1.4 Intent - B = —1& Activity 10/14

3. OpentheDisplayMessageActivity. java file.

The class already includes an implementation of the required oncreate () method. You will update the
Implementation of this method later. It also includes an implementation of onoOptionsItemSelected(),
which handles the action bar's Up behavior. Keep these two methods as they are for now.

4. Remove the onCreateOptionsMenu () method.

You won't need it for this app.

[Note | : If you're developing with Android Studio, you can run the app now, but not much
happens. Clicking the Send button starts the second activity, but it uses a default "Hello

world" layout provided by the template. You'll soon update the activity to instead display a

custom text view.

45

1.4 Intent - E(E)1 5 —1{& Activity 11/14

STEP 4 : Receive the Intent

Every Activity is invoked by an Intent, regardless of how the user navigated there. You can get
the Intent that started your activity by calling getintent() and retrieve the data contained within
the intent.

1. In the java/com.mycompany.myfirstapp directory, edit the DisplayMessageActivity.java
file.

2. In the onCreate() method, remove the following line:
setContentView(R.layout.activity_display_message);
3. Get the intent and assign it to a local variable.
Intent intent = getintent();
4. At the top of the file, import the Intent class.
In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

5. Extract the message delivered by MainActivity with the getStringExtra() method.

String message = intent.getStringExtra(MyActivity. EXTRA_MESSAGE);

46

1.4 Intent - B = —1& Activity 12/14

STEP 5 : Display the Message

1. Intheoncreate () method, create a Textview object.

TextView textView = new TextView(this);

2. Set the text size and message with setText ().

textView.setTextSize(40);

textView.setText (message) ;
3. Then add the Textview as the root view of the activity’s layout by passing it to setContentview().

setContentView(textView) ;

4. Atthe top of the file, import the Textview class.
In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

47

1.4 Intent - B = —1& Activity 13/14

The complete oncreate () method for DisplayMessageActivity now looks like this:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Get the message from the intent
Intent intent = getIntent();
String message = intent.getStringExtra(MyActivity.EXTRA MESSAGE) ;

// Create the text view

TextView textView = new TextView(this);
textView.setTextSize (40);
textView.setText (message) ;

// Set the text view as the activity layout

setContentView(textView) ;

48

1.4 Intent - B = —1& Activity 14/14

You can now run your first app.
1. When it opens, type a message in the text field, click Send, and

2. the message appears on the second activity.

3 My First App '. '3‘ My First App

Hello World! | Send He”o Wor|d|

qwer tyu.
Al (e fdl & gl i SR A A

& zZz x cvbnm &

n3 & @

49

1.5 Activity L apiEEf

f7#2 (Process) B LIk 7

ik Android App 1782) T TV M8 46 T 5P A T

1. Foreground Process (Hj 5=4{TH%) @

Activity : onCreate — onStart — onResume — F{ij 5t/ %

2. Visible Process (F[fR1THE) @
Activity : FEIY onPause — " fRf7HE (A2 =]

3. Service Process (JRFEATHE)
Service : Client/Server 75 R LR %

4. Background Process (5 5{TH2) @
Activity : FERY onStop — & EATHE [H AR =]

5. Empty Process (2£47#%) @
Activity 22 171F : 25 DB RS
NEXT — onCreate [[H18 & A /7]
or — onDestroy [45H Activity]

1772 1~ 2~ 4~ 51 Activity £ AR BIR .2 A] -

Activity
launched

y

> onCreate()

v

onStart() < onRestart()
‘ A

4+

User navigates

to the activity onResume()

v

‘ App process | Activity @
\ killed ,; ; running ,

.\ /,

[
Another activity comes
into the foreground

User returns

+ to the activity
Apps with higher priority)
need memory onPause()

I

The activity is

no longer visible @ :

User navigates
+ to the activity
U’5) onStop() J

I
The activity is finishing or

being destroyed by the s@

onDestroy()

v

Activity
' shut down ;
\§ p/

,/"

(|

50 The Activity Lifecycle and Callback methods

1.5 Activity 2458 Hf 2/4

Managing the Activity Lifecycle

Managing the lifecycle of your activities by implementing callback methods is crucial to developing a strong
and flexible application. The lifecycle of an activity is directly affected by its association with other activities, its
task and back stack.

An activity can exist in essentially three states:

Resumed

The activity is in the foreground of the screen and has user focus. (This state is also sometimes referred to
as "running".)

Paused
Another activity is in the foreground and has focus, but this one is still visible. That is, another activity is
visible on top of this one and that activity is partially transparent or doesn't cover the entire screen. A
paused activity is completely alive (the Activity object is retained in memory, it maintains all state and
member information, and remains attached to the window manager), but can be killed by the system in
extremely low memory situations.

Stopped
The activity is completely obscured by another activity (the activity is now in the "background”). A stopped
activity is also still alive (the Activity object is retained in memory, it maintains all state and member
information, but is not attached to the window manager). However, it is no longer visible to the user and it
can be killed by the system when memory is needed elsewhere.

If an activity is paused or stopped, the system can drop it from memory either by asking it to finish (calling its
finish () method), or simply killing its process. When the activity is opened again (after being finished or
killed), it must be created all over.

51

1.5 Activity 2458 Hf 3/4

All of the callback methods are hooks that you can override to do appropriate work when the state of your
activity changes. The following skeleton activity includes each of the fundamental lifecycle methods:

public class ExampleActivity extends Activity {
@Override
public void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
// The activity is being created.
}
@Override
protected void onStart() {
super.onStart();
// The activity is about to become visible.
}
@Override
protected void onResume() {
super.onResume() ;
// The activity has become visible (it is now "resumed").
}
@Override
protected void onPause() {
super .onPause() ;
// Another activity is taking focus (this activity is about to be "paused").
}
@Override
protected void onStop() {
super.onStop() ;
// The activity is no longer visible (it is now "stopped")
}
@Override
protected void onDestroy() {
super.onDestroy() ;

// The activity is about to be destroyed.

1.5 Activity 2 4yiE 8

I A Toast &7l
Toast.makeText(this, fext, duration).show();

2 A %@ callback method = > 385
Activity lifecycle #1{t (2EH5FEX) & K
FigR T A RARIES - App #% 21{aTAEAY
callback methods :

1. E{&) LifeActivity App

2. EE FH - FRBIRER

3. B Efth App

4. =T RO §#

5. =T HOME &

6. FHXELE LifeActivity App icon

7. T RE #

public class LifeActivity extends ActionBarActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_life);
Toast.makeText(this, "onCreate()", Toast. LENGTH_LONG).show();

}
@Qverride

protected void onStart() {

super.onStart();
Toast.makeText(this, "onStart()", Toast. LENGTH_LONG).show();
}
@OQverride
protected void onRestart() {
super.onStart();
Toast.makeText(this, "onRestart()", Toast.LENGTH_LONG).show();

}
@Qverride

protected void onResume() {
super.onResume();
Toast.makeText(this, "onResume()", Toast.LENGTH_LONG).show();
}
@OQOverride
protected void onPause() {
super.onPause();
Toast.makeText(this, "onPause()", Toast.LENGTH_LONG).show();
}
@OQOverride
protected void onStop() {
super.onStop();
Toast.makeText(this, "onStop()", Toast.LENGTH_LONG).show();
}
@OQOverride
protected void onDestroy() {
super.onDestroy();
Toast.makeText(this, "onDestroy()", Toast.LENGTH_LONG).show();

}

53

